Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

A countable dense homogeneous topological vector space is a Baire space

Uproszczony widok
dc.abstract.enWe prove that every homogeneous countable dense homogeneous topological space containing a copy of the Cantor set is a Baire space. In particular, every countable dense homogeneous topological vector space is a Baire space. It follows that, for any nondiscrete metrizable space , the function space is not countable dense homogeneous. This answers a question posed recently by R. Hernández-Gutiérrez. We also conclude that, for any infinite-dimensional Banach space (dual Banach space ), the space equipped with the weak topology ( with the weak topology) is not countable dense homogeneous. We generalize some results of Hrušák, Zamora Avilés, and Hernández-Gutiérrez concerning countable dense homogeneous products.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorKrupski, Mikołaj
dc.contributor.authorDobrowolski, Tadeusz
dc.contributor.authorMarciszewski, Witold
dc.date.accessioned2024-01-24T17:18:31Z
dc.date.available2024-01-24T17:18:31Z
dc.date.issued2021
dc.description.financePublikacja bezkosztowa
dc.description.number4
dc.description.volume149
dc.identifier.doi10.1090/PROC/15271
dc.identifier.issn0002-9939
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/101497
dc.identifier.weblinkhttps://www.ams.org/proc/earlyview/#proc15271/.pdf
dc.languageeng
dc.pbn.affiliationmathemathics
dc.relation.ispartofProceedings of the American Mathematical Society
dc.relation.pages1773-1789
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.titleA countable dense homogeneous topological vector space is a Baire space
dc.typeJournalArticle
dspace.entity.typePublication