Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa
 

Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices

Uproszczony widok
cris.lastimport.scopus2024-02-12T20:52:45Z
dc.abstract.enThe crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of-principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV-vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV-vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorAltantzis, Thomas
dc.contributor.authorPociecha, Damian
dc.contributor.authorPedrazo-Tardajos, Adrián
dc.contributor.authorGórecka, Ewa
dc.contributor.authorLewandowski, Wiktor
dc.contributor.authorBals, Sara
dc.contributor.authorBagiński, Maciej
dc.contributor.authorTupikowska, Martyna
dc.contributor.authorRockstuhl, Carsten
dc.contributor.authorAndruszkiewicz, Aneta
dc.contributor.authorPawlak, Mateusz
dc.contributor.authorSuryadharma, Radius N.S.
dc.contributor.authorTomczyk, Ewelina
dc.contributor.authorVetter, Andreas
dc.date.accessioned2024-01-26T11:19:00Z
dc.date.available2024-01-26T11:19:00Z
dc.date.copyright2021-02-23
dc.date.issued2021
dc.description.accesstimeAT_PUBLICATION
dc.description.financePublikacja bezkosztowa
dc.description.number3
dc.description.versionFINAL_PUBLISHED
dc.description.volume15
dc.identifier.doi10.1021/ACSNANO.0C09746
dc.identifier.issn1936-0851
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/124152
dc.identifier.weblinkhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c09746
dc.languageeng
dc.pbn.affiliationchemical sciences
dc.relation.ispartofACS Nano
dc.relation.pages4916-4926
dc.rightsCC-BY
dc.sciencecloudnosend
dc.subject.encooperative interactions
dc.subject.endynamic assembly
dc.subject.enin situ TEM
dc.subject.enliquid crystals
dc.subject.enplasmonics
dc.subject.ensupramolecular self-assembly
dc.subject.enTEM tomography
dc.titleUnderstanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices
dc.typeJournalArticle
dspace.entity.typePublication