Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BY-NC-NDCC-BY-NC-ND - Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych

Three-Dimensional Printable Conductive Semi-Interpenetrating Polymer Network Hydrogel for Neural Tissue Applications

Autor
Bilewicz, Renata
Zembrzycki, Krzysztof
Kowalewski, Tomasz
Lanzi, Massimiliano
Fiorelli, Roberto
Sanai, Nader
Pierini, Filippo
Jezierska-Woźniak, Katarzyna
Maksymowicz, Wojciech
Camposeo, Andrea
Data publikacji
2021
Abstrakt (EN)

Intrinsically conducting polymers (ICPs) are widely used to fabricate biomaterials; their application in neural tissue engineering, however, is severely limited because of their hydrophobicity and insufficient mechanical properties. For these reasons, soft conductive polymer hydrogels (CPHs) are recently developed, resulting in a water-based system with tissue-like mechanical, biological, and electrical properties. The strategy of incorporating ICPs as a conductive component into CPHs is recently explored by synthesizing the hydrogel around ICP chains, thus forming a semi-interpenetrating polymer network (semi-IPN). In this work, a novel conductive semi-IPN hydrogel is designed and synthesized. The hybrid hydrogel is based on a poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide) hydrogel where polythiophene is introduced as an ICP to provide the system with good electrical properties. The fabrication of the hybrid hydrogel in an aqueous medium is made possible by modifying and synthesizing the monomers of polythiophene to ensure water solubility. The morphological, chemical, thermal, electrical, electrochemical, and mechanical properties of semi-IPNs were fully investigated. Additionally, the biological response of neural progenitor cells and mesenchymal stem cells in contact with the conductive semi-IPN was evaluated in terms of neural differentiation and proliferation. Lastly, the potential of the hydrogel solution as a 3D printing ink was evaluated through the 3D laser printing method. The presented results revealed that the proposed 3D printable conductive semi-IPN system is a good candidate as a scaffold for neural tissue applications.

Dyscyplina PBN
nauki chemiczne
Czasopismo
Biomacromolecules
Tom
22
Zeszyt
7
Strony od-do
3084-3098
ISSN
1525-7797
Data udostępnienia w otwartym dostępie
2021-06-21
Licencja otwartego dostępu
Uznanie autorstwa- Użycie niekomercyjne- Bez utworów zależnych