Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Towards Grad-CAM Based Explainability in a Legal Text Processing Pipeline

Autor
Ramakrishna, Shashishekar
Górski, Łukasz
Nowosielski, Jędrzej
Data publikacji
2021
Abstrakt (EN)

Explainable AI (XAI) is a domain focused on providing interpretabil- ity and explainability of a decision-making process. In the domain of law, in addi- tion to system and data transparency, it also requires the (legal-) decision-model transparency and the ability to understand the model’s inner working when arriv- ing at the decision. This paper provides the first approaches to using a popular im- age processing technique, Grad-CAM, to showcase the explainability concept for legal texts. With the help of adapted Grad-CAM metrics, we show the interplay between the choice of embeddings, its consideration of contextual information, and their effect on downstream processing.

Słowa kluczowe EN
Legal Knowledge Representation
Language Models
Grad-CAM
HeatMaps
CNN
Dyscyplina PBN
informatyka
Tom
2891
Strony od-do
1-12
Licencja otwartego dostępu
Dostęp zamknięty