Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BY-NCCC-BY-NC - Uznanie autorstwa - Użycie niekomercyjne

Finite Idempotent Set-Theoretic Solutions of the Yang–Baxter Equation

Autor
Kubat, Łukasz
Verwimp, Charlotte
Antwerpen, Arne Van
Jespers, Eric
Colazzo, Ilaria
Data publikacji
2023
Abstrakt (EN)

It is proven that finite idempotent left non-degenerate set-theoretic solutions (X,r) of the Yang–Baxter equation on a set X are determined by a left simple semigroup structure on X (in particular, a finite union of isomorphic copies of a group) and some maps q and φx on X⁠, for x∈X⁠. This structure turns out to be a group precisely when the associated Yang–Baxter monoid M(X,r) is cancellative and all the maps φx are equal to an automorphism of this group. Equivalently, the Yang–Baxter algebra K[M(X,r)] is right Noetherian, or in characteristic zero it has to be semiprime. The Yang–Baxter algebra is always a left Noetherian representable algebra of Gelfand–Kirillov dimension one. To prove these results, it is shown that the Yang–Baxter semigroup S(X,r) has a decomposition in finitely many cancellative semigroups Su indexed by the diagonal, each Su has a group of quotients Gu that is finite-by-(infinite cyclic) and the union of these groups carries the structure of a left simple semigroup. The case that X equals the diagonal is fully described by a single permutation on X⁠.

Dyscyplina PBN
matematyka
Czasopismo
International Mathematics Research Notices
Strony od-do
1-32
ISSN
1073-7928
Data udostępnienia w otwartym dostępie
2023-08-15
Licencja otwartego dostępu
Uznanie autorstwa- Użycie niekomercyjne