Artykuł w czasopiśmie
Brak miniatury
Licencja
Geometric features of Vessiot--Guldberg Lie algebras of conformal and Killing vector fields on R^2
Autor
Lewandowski, Michał
Data publikacji
2017
Abstrakt (EN)
This paper locally classifies finite-dimensional Lie algebras of conformal and Killing vector fields on R^2 relative to an arbitrary pseudo-Riemannian metric. Several results about their geometric properties are detailed, e.g. their invariant distributions and induced symplectic structures. Findings are illustrated with two examples of physical nature: the Milne–Pinney equation and the projective Schrödinger equation on the Riemann sphere.
Dyscyplina PBN
matematyka
Czasopismo
BANACH CENTER PUBLICATIONS
Tom
113
Strony od-do
243-262
ISSN
0137-6934
Licencja otwartego dostępu
Dostęp zamknięty