Artykuł w czasopiśmie
Brak miniatury
Licencja
Khovanov homotopy type, periodic links and localizations
Autor
Data publikacji
2021
Abstrakt (EN)
Given an m-periodic link L⊂S3, we show that the Khovanov spectrum XL constructed by Lipshitz and Sarkar admits a group action. We relate the Borel cohomology of XL to the equivariant Khovanov homology of L constructed by the second author. The action of Steenrod algebra on the cohomology of XL gives an extra structure of the periodic link. Another consequence of our construction is an alternative proof of the localization formula for Khovanov homology, obtained first by Stoffregen and Zhang. By applying the Dwyer–Wilkerson theorem we express Khovanov homology of the quotient link in terms of equivariant Khovanov homology of the original link.
Dyscyplina PBN
matematyka
Czasopismo
Mathematische Annalen
Tom
380
Strony od-do
1233–1309
ISSN
0025-5831
Data udostępnienia w otwartym dostępie
2021-02-19
Licencja otwartego dostępu
Uznanie autorstwa