Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa

Subexponential-time algorithms for finding large induced sparse subgraphs

Autor
Pilipczuk, Michał
Walczak, Bartosz
Rzążewski, Paweł
Okrasa, Karolina
Novotna, Jana
Leeuwen, Erik Jan van
Data publikacji
2019
Abstrakt (EN)

LetCandDbe hereditary graph classes. Consider the following problem: given a graphG∈ D,find a largest, in terms of the number of vertices, induced subgraph ofGthat belongs toC. Weprove that it can be solved in2o(n)time, wherenis the number of vertices ofG, if the followingconditions are satisfied:the graphs inCare sparse, i.e., they have linearly many edges in terms of the number of vertices;the graphs inDadmit balanced separators of size governed by their density, e.g.,O(∆)orO(√m), where∆andmdenote the maximum degree and the number of edges, respectively; andthe considered problem admits a single-exponential fixed-parameter algorithm when parameter-ized by the treewidth of the input graph.This leads, for example, to the following corollaries for specific classesCandD:a largest induced forest in aPt-free graph can be found in2 ̃O(n2/3)time, for every fixedt; anda largest induced planar graph in a string graph can be found in2 ̃O(n3/4) time.

Słowa kluczowe EN
string graphs
subexponential algorithm
feedback vertex set
Pt-free graphs
Dyscyplina PBN
informatyka
Strony od-do
23:1-23:11
Data udostępnienia w otwartym dostępie
2020-01-13
Licencja otwartego dostępu
Uznanie autorstwa