Artykuł w czasopiśmie
Brak miniatury
Licencja
Partitioning edges of a planar graph into linear forests and a matching
Autor
Data publikacji
2023
Abstrakt (PL)
We show that the edges of any planar graph of maximum degree at most 9 can be partitioned into 4 linear forests and a matching. Combined with known results, this implies that the edges of any planar graph G of odd maximum degree ∆ ≥ 9 can be partitioned into (∆−1)/2 linear forests and one matching. This strengthens well-known results stating that graphs in this class have chromatic index ∆ [Vizing, 1965] and linear arboricity at most ⌈(Δ+1)/2⌉.
Słowa kluczowe EN
Combinatorics
Discrete Mathematics
Dyscyplina PBN
informatyka
Czasopismo
Journal of Graph Theory
Tom
104
Zeszyt
3
Strony od-do
659-677
ISSN
0364-9024
Link do źródła
Licencja otwartego dostępu
Dostęp zamknięty