Artykuł w czasopiśmie
Brak miniatury
Licencja
On the Domains of Bessel Operators
Autor
Georgescu, Vladimir
Data publikacji
2021
Abstrakt (EN)
We consider the Schrödinger operator on the halfline with the potential (m2−14)1x2, often called the Bessel operator. We assume that m is complex. We study the domains of various closed homogeneous realizations of the Bessel operator. In particular, we prove that the domain of its minimal realization for |Re(m)|<1 and of its unique closed realization for Re(m)>1 coincide with the minimal second-order Sobolev space. On the other hand, if Re(m)=1 the minimal second-order Sobolev space is a subspace of infinite codimension of the domain of the unique closed Bessel operator. The properties of Bessel operators are compared with the properties of the corresponding bilinear forms.
Dyscyplina PBN
nauki fizyczne
Czasopismo
Annales Henri Poincare
ISSN
1424-0637
Licencja otwartego dostępu
Dostęp zamknięty