Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Fine-grained complexity of graph homomorphism problem for bounded-treewidth graphs

Autor
Rzążewski, Paweł
Okrasa, Karolina
Data publikacji
2020
Abstrakt (PL)

W pracy analizujemy złożoność problemu znajdowania homomorfizmu w ustalony graf H, parametryzowaną przez szerokość drzewową grafu G. Pokazujemy nieoczekiwany związek tego problemu z pewnymi zagadnieniami z algebraicznej teorii grafów.

Abstrakt (EN)

<p>For graphs G and H, a homomorphism from G to H is an edge-preserving mapping from the vertex set of G to the vertex set of H. For a fixed graph H, by Hom(H) we denote the computational problem which asks whether a given graph G admits a homomorphism to H. If H is a complete graph with k vertices, then Hom(H) is equivalent to the k-Coloring problem, so graph homomorphisms can be seen as generalizations of colorings. It is known that Hom(H) is polynomial-time solvable if H is bipartite or has a vertex with a loop, and NP-complete otherwise [Hell and Nešetřil, JCTB 1990]. In this paper we are interested in the complexity of the problem, parameterized by the treewidth of the input graph G. If G has n vertices and is given along with its tree decomposition of width tw(G), then the problem can be solved in time |V (H)|<sup>tw(</sup>G<sup>)</sup> · n<sup>O</sup><sup>(1)</sup>, using a straightforward dynamic programming. We explore whether this bound can be improved. We show that if H is a projective core, then the existence of such a faster algorithm is unlikely: assuming the Strong Exponential Time Hypothesis (SETH), the Hom(H) problem cannot be solved in time (|V (H)| − ε)<sup>tw(</sup>G<sup>)</sup> · n<sup>O</sup><sup>(1)</sup>, for any ε > 0. This result provides a full complexity characterization for a large class of graphs H, as almost all graphs are projective cores. We also notice that the naive algorithm can be improved for some graphs H, and show a complexity classification for all graphs H, assuming two conjectures from algebraic graph theory. In particular, there are no known graphs H which are not covered by our result. In order to prove our results, we bring together some tools and techniques from algebra and from fine-grained complexity.</p>

Słowa kluczowe PL
drobnoziarnista złożoność
homomorfizm grafów
Dyscyplina PBN
informatyka
Strony od-do
1578-1590
Licencja otwartego dostępu
Dostęp zamknięty