Artykuł w czasopiśmie
Brak miniatury
Licencja
Geometric ergodicity of Rao and Teh's algorithm for Markov jump processes and CTBNs
Data publikacji
2017
Abstrakt (EN)
Rao and Teh (2012, 2013) introduced an efficient MCMC algorithm for sampling from the posterior distribution of a hidden Markov jump process. The algorithm is based on the idea of sampling virtual jumps. In the present paper we show that the Markov chain generated by Rao and Teh’s algorithm is geometrically ergodic. To this end we establish a geometric drift condition towards a small set. A similar result is also proved for a special version of the algorithm, used for probabilistic inference in Continuous Time Bayesian Networks.
Słowa kluczowe EN
Continuous time Markov processes
MCMC
hidden Markov models
posterior sampling
geometric ergodicity
drift condition
small set
continuous time Bayesian network
Dyscyplina PBN
matematyka
Czasopismo
Electronic Journal of Statistics
Tom
11
Zeszyt
2
Strony od-do
4629-4648
ISSN
1935-7524
Link do źródła
Licencja otwartego dostępu
Dostęp zamknięty