Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

RainBench: Towards Global Precipitation Forecasting from Satellite Imagery

Autor
Witt, Christian Schroeder de
Tong, Catherine
Biliński, Piotr
Kalaitzis, Freddie
Watson-Parris, Duncan
Zantedeschi, Valentina
Chantry, Matthew
Martini, Daniele De
Data publikacji
2021
Abstrakt (EN)

Extreme precipitation events, such as violent rainfall and hail storms, routinely ravage economies and livelihoods around the developing world. Climate change further aggravates this issue. Data-driven deep learning approaches could widen the access to accurate multi-day forecasts, to mitigate against such events. However, there is currently no benchmark dataset dedicated to the study of global precipitation forecasts. In this paper, we introduce \textbf{RainBench}, a new multi-modal benchmark dataset for data-driven precipitation forecasting. It includes simulated satellite data, a selection of relevant meteorological data from the ERA5 reanalysis product, and IMERG precipitation data. We also release \textbf{PyRain}, a library to process large precipitation datasets efficiently. We present an extensive analysis of our novel dataset and establish baseline results for two benchmark medium-range precipitation forecasting tasks. Finally, we discuss existing data-driven weather forecasting methodologies and suggest future research avenues.

Dyscyplina PBN
informatyka
Strony od-do
1-11
Licencja otwartego dostępu
Dostęp zamknięty