Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

From Heun Class Equations to Painlevé Equations

Autor
Dereziński, Jan
Latosiński, Adam
Ishkhanyan, Artur
Data publikacji
2021
Abstrakt (EN)

In this paper, we aim at addressing the globalization problem of Hamilton–DeDonder–Weyl equations on a local k-symplectic framework and we introduce the notion of locally conformal k-symplectic (l.c.k-s.) manifolds. This formalism describes the dynamical properties of physical systems that locally behave like multi-Hamiltonian systems. Here, we describe the local Hamiltonian properties of such systems, but we also provide a global outlook by introducing the global Lee one-form approach. In particular, the dynamics will be depicted with the aid of the Hamilton–Jacobi equation, which is specifically proposed in a l.c.k-s manifold.

Dyscyplina PBN
nauki fizyczne
Czasopismo
Symmetry, Integrability and Geometry - Methods and Applications
Tom
18
Zeszyt
1
Strony od-do
26
ISSN
1815-0659
Licencja otwartego dostępu
Dostęp zamknięty