Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa

Multitemporal Hyperspectral Data Fusion with Topographic Indices—Improving Classification of Natura 2000 Grassland Habitats

Autor
Kopeć, Dominik
Gryguc, Krzysztof
Marcinkowska-Ochtyra, Adriana
Jarocińska, Anna
Ochtyra, Adrian
Sławik, Łukasz
Data publikacji
2019
Abstrakt (EN)

Accurately identifying Natura 2000 habitat areas with the support of remote sensing techniques is becoming increasingly feasible. Various data types and methods are used for this purpose, and the fusion of data from various sensors and temporal periods (terms) within the phenological cycle allows natural habitats to be precisely identified. This research was aimed at selecting optimal datasets to classify three grassland Natura 2000 habitats (codes 6210, 6410 and 6510) in the Ostoja Nidzia ´nska Natura 2000 site in Poland based on hyperspectral imagery and botanical on-ground reference data acquired in three terms during one vegetative period in 2017 (May, July and September), as well as a digital terrain model (DTM) obtained by airborne laser scanning (ALS). The classifications were carried out using a random forest (RF) algorithm on minimum noise fraction (MNF) transform output bands obtained for single terms, as well as data fusion combining the topographic indices (TOPO) calculated from the DTM, multitemporal hyperspectral data, or a combination of the two. The classification accuracy statistics were analysed in various combinations based on the datasets and their terms of acquisition. Topographic indices improved the classification accuracy of habitats 6210 and 6410, with the greatest impact noted in increased classification accuracy of xerothermic grasslands. The best terms for identifying specific habitats were autumn for 6510 and summer for 6210 and 6410, while the best results overall were obtained by combining data from all terms. The highest obtained values of the F1 coefficient were 84.5% for habitat 6210, 83.2% for habitat 6410, and 69.9% for habitat 6510. Comparing the data fusion results for habitats 6210 and 6410, greater accuracy was obtained by adding topographic indices to multitemporal hyperspectral data, while for habitat 6510, greater accuracy was obtained by fusing only multitemporal hyperspectral data.

Słowa kluczowe EN
Classification
hyperspectral
topographic indices
multitemporal
Natura 2000 habitats
Random Forest
Dyscyplina PBN
geografia społeczno-ekonomiczna i gospodarka przestrzenna
Czasopismo
Remote Sensing
Tom
11
Zeszyt
19
Strony od-do
Art. No. 2264 (22 pp)
ISSN
2072-4292
Data udostępnienia w otwartym dostępie
2019-09-28
Licencja otwartego dostępu
Uznanie autorstwa