Licencja
Compressible Navier‐Stokes equations with ripped density
Abstrakt (EN)
We are concerned with the Cauchy problem for the two-dimensional compressible Navier-Stokes equations supplemented with general H1 initial velocity and bounded initial density not necessarily strictly positive: it may be the characteristic function of any set, for instance. In the perfect gas case, we establish global-in-time existence and uniqueness, provided the volume (bulk) viscosity coefficient is large enough. For more general pressure laws (like e.g. P = ργ with γ > 1 ), we still get global existence, but uniqueness remains an open question. As a by-product of our results, we give a rigorous justification of the convergence to the inhomogeneous incompressible Navier-Stokes equations when the bulk viscosity tends to infinity. In the three-dimensional case, similar results are proved for short time without restriction on the viscosity, and for large time if the initial velocity field is small enough.