Artykuł w czasopiśmie
Brak miniatury
Licencja
Fractional differentiability for solutions of the inhomogeneous p-Laplace system
Autor
Data publikacji
2018
Abstrakt (EN)
It is shown that if $p \ge 3$ and $u \in W^{1,p}(\Omega,\mathbb{R}^N)$ solves the inhomogenous $p$-Laplace system \[ \operatorname{div} (|\nabla u|^{p-2} \nabla u) = f, \qquad f \in W^{1,p'}(\Omega,\mathbb{R}^N), \] then locally the gradient $\nabla u$ lies in the fractional Nikol'ski{\u\i} space $\mathcal{N}^{\theta,2/\theta}$ with any $\theta \in [ \tfrac{2}{p}, \tfrac{2}{p-1} )$. To the author's knowledge, this result is new even in the case of $p$-harmonic functions, slightly improving known $\mathcal{N}^{2/p,p}$ estimates. The method used here is an extension of the one used by A. Cellina in the case $2 \le p < 3$ to show $W^{1,2}$ regularity.
Słowa kluczowe EN
p-Laplacian degenerate elliptic systems fractional order Nikol’ski spaces
Dyscyplina PBN
matematyka
Czasopismo
Proceedings of the American Mathematical Society
Tom
146
Strony od-do
3009-3017
ISSN
0002-9939
Licencja otwartego dostępu
Dostęp zamknięty