Artykuł w czasopiśmie
Brak miniatury
Licencja
Below All Subsets for Minimal Connected Dominating Set
Autor
Data publikacji
2018
Abstrakt (EN)
A vertex subset S in a graph G is a dominating set if every vertex not contained in S has a neighbor in S. A dominating set S is a connected dominating set if the subgraph G[S] induced by S is connected. A connected dominating set S is a minimal connected dominating set if no proper subset of S is also a connected dominating set. We prove that there exists a constant \epsilon > 10 - 50 such that every graph G on n vertices has at most \scrO (2(1 - \epsilon )n) minimal connected dominating sets. For the same \epsilon we also give an algorithm with running time 2(1 - \epsilon )n \cdot n\scrO (1) to enumerate all minimal connected dominating sets in an input graph G.
Dyscyplina PBN
informatyka
Czasopismo
SIAM Journal on Discrete Mathematics
Tom
32
Zeszyt
3
Strony od-do
332--2345
ISSN
0895-4801
Licencja otwartego dostępu
Dostęp zamknięty