Artykuł w czasopiśmie
Brak miniatury
Licencja
Perturbations of the Hess-Appelrot and Lagrange cases in the rigid body dynamics
Autor
Data publikacji
2019
Abstrakt (EN)
The Lagrange case in the rigid body dynamics is completely integrable, with a family of invariant tori supporting periodic or quasi-periodic motion. We study perturbations of this case. In the non-periodic case the KAM theory predicts no changes in the evolution. In the periodic cases one expects existence of isolated limit cycles, which can be studied using Melnikov functions. We find these cycles in the case when the invariant torus is close to so-called critical circle. The presented approach is analogous to our previous analysis of the Hess–Appelrot case. In particular, we show that the number of created limit cycles in the latter case is uniformly bounded.
Słowa kluczowe EN
Euler-Poisson system Hess-Appelrot case Lagrange case Melnikov integral
Dyscyplina PBN
matematyka
Czasopismo
Journal of Geometry and Physics
Tom
142
Strony od-do
121-136
ISSN
0393-0440
Licencja otwartego dostępu
Dostęp zamknięty