Artykuł w czasopiśmie
Brak miniatury
Licencja
A countable dense homogeneous topological vector space is a Baire space
Autor
Data publikacji
2021
Abstrakt (EN)
We prove that every homogeneous countable dense homogeneous topological space containing a copy of the Cantor set is a Baire space. In particular, every countable dense homogeneous topological vector space is a Baire space. It follows that, for any nondiscrete metrizable space , the function space is not countable dense homogeneous. This answers a question posed recently by R. Hernández-Gutiérrez. We also conclude that, for any infinite-dimensional Banach space (dual Banach space ), the space equipped with the weak topology ( with the weak topology) is not countable dense homogeneous. We generalize some results of Hrušák, Zamora Avilés, and Hernández-Gutiérrez concerning countable dense homogeneous products.
Dyscyplina PBN
matematyka
Czasopismo
Proceedings of the American Mathematical Society
Tom
149
Zeszyt
4
Strony od-do
1773-1789
ISSN
0002-9939
Link do źródła
Licencja otwartego dostępu
Dostęp zamknięty