Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty

Predicting Compressive Strength of Cement-Stabilized Rammed Earth Based on SEM Images Using Computer Vision and Deep Learning

Autor
Narloch, Piotr
Tarawneh, Ahmad S.
Almohammadi, Khalid
Hassanat, Ahmad
Anysz, Hubert
Kotowski, Jakub
Data publikacji
2019
Abstrakt (EN)

Predicting the compressive strength of cement-stabilized rammed earth (CSRE) using current testing machines is time-consuming and costly and may harm the environment due to the samples’ waste. This paper presents an automatic method using computer vision and deep learning to solve the problem. For this purpose, a deep convolutional neural network (DCNN) model is proposed, which was evaluated on a new in-house scanning electron microscope (SEM) image database containing 4284 images of materials with different compressive strengths. The experimental results show reasonable prediction results compared to other traditional methods, achieving 84% prediction accuracy and a small (1.5) oot Mean Square Error (RMSE). This indicates that the proposed method (with some enhancements) can be used in practice for predicting the compressive strength of CSRE samples.

Słowa kluczowe EN
deep learning
convolutional neural network
SEM images
rammed earth
cement-stabilized rammed earth
cement stabilization
Dyscyplina PBN
nauki o Ziemi i środowisku
Czasopismo
Applied Sciences (Switzerland)
Tom
9
Zeszyt
23
Strony od-do
1-14
Licencja otwartego dostępu
Dostęp zamknięty